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Abstract. The zero-temperature critical behaviours of the classical Heisenberg andXY

ferromagnets in the uniaxial random field are studied in the arbitrary spatial dimension. Exact
results are obtained for the magnetization, transversal to the random field direction, at the
Gaussian and bimodal distributions of the random field. For the Gaussian distribution the
critical behaviour in strong random fields is independent of the spatial dimension. The
transversal magnetization,m⊥ ∼ lnh0/h

2
0, where h0 is the distribution width. For the

bimodal distribution of the random field, the transversal magnetization obeys the lawm⊥ ∼
exp(−constant/(Hc−H)D/2), whereHc is a critical field, andH is the random field amplitude.
The same critical behaviour is expected for related systems, for example random antiferromagnets
in the uniform field.

1. Introduction

There has been an interest in random field magnets [1] for more than 20 years. This interest
is motivated by the wide range of systems, which are described by random field models.
Examples are dilute antiferromagnets in the magnetic field [2, 3], binary liquids in the
porous media [4] and vortex phases of the doped superconductors [5]. A satisfactory theory
of the random field magnets is still absent. Recently some progress was achieved due to
the replica symmetry breaking variational method [6]. However, variational calculations
are always approximate. This makes rigorous results for particular models important. Exact
results [7] allowed us to solve the question of stability of long-range order in the random
field ferromagnets. The problem of the critical behaviour is more difficult. At the moment
it is solved only for the spherical models [8].

In this paper the critical behaviour of a random field model with a finite number of
the order parameter components is exactly found in the arbitrary spatial dimension. We
consider a multicomponent ferromagnet in the uniaxial random field at zero temperature.
In the case of the bimodal distribution of the random field, the model describes low-
temperature properties of the random antiferromagnet in the uniform field. We also consider
the Gaussian distribution of the random field. The critical properties of this model at non-
zero temperatures were studied in [9–11] with the renormalization group method. Here we
investigate the zero-temperature critical behaviour of the magnetization, transversal to the
random field. The critical behaviours are different for the Gaussian and bimodal cases and
differ from what was found at non-zero temperatures. We neglect the quantum fluctuations
assuming that the spins are large.

The model is described by the following Hamiltonian

H = −J
∑
〈ij〉
SiSj −

∑
i

HiS
z
i (1)
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whereSi are the unit length spin vectors,Hi are the random fields and
∑
〈ij〉 denotes the

summation over the pairs of the neighbouring sites of theD-dimensional cubic lattice. The
distance between the neighbouring spins will be designated asa. Two types of the field
distribution are considered:

(1) the Gaussian distribution of the widthh0

P(Hi) = 1√
2πh0

exp

(
−H

2
i

2h2
0

)
(2)

(2) the bimodal distribution

P(Hi) = cδ(Hi +H)+ (1− c)δ(Hi −H) (3)

where c and 1− c are the probabilities of the two directions of the random field±H .
The Hamiltonian (1) with the bimodal field distribution can be obtained as a result of a
gauge transformation of the Hamiltonian of the Mattis magnet [12] in the uniform fieldH .
Results, found for the bimodal case, are also applicable to the random bond and random
site antiferromagnets in the uniform field.

The transversal magnetization appears due to the same mechanism, as the transversal
staggered magnetization in the antiferromagnet in the uniform field [13]. At the Gaussian
field distribution, the transversal magnetization,m⊥, is non-zero for any distribution width,
h0 <∞. We shall show rigorously that at largeh0 the magnetization

m⊥ ∼ constant
lnh0

h2
0

(4)

in any spatial dimensionD. At the bimodal distribution, the transversal magnetization is
zero for strong fields,H > Hc = 4DJ . As we shall rigorously prove, atH close to the
critical field,Hc, the magnetization

m⊥ ∼ exp

(
− constant

(Hc−H)D/2
)
. (5)

In the one-dimensional case the last formula is proven below for any strength of the disorder
c in equation (3). ForD > 1 equation (5) is proven below atc � 1. Formula (5) is valid
for an arbitrary strength of the disorder. A general proof will be published elsewhere.

The critical behaviour (4), (5) is the same for any number of the spin components. This
is a manifestation of the fact, that in the ground state the transversal components of all the
spins have the same direction. This fact can be verified by the consideration of how the
energy (1) changes at spin rotations around the field direction. Thus, one can assume, that
the spinsSi are two-component:

Szi = cosφi Sxi = sinφi > 0. (6)

The further investigation is simplified by the fact that thex-components of all the spins
have the same sign. This circumstance reduces the problem to the calculation of the disorder
average of the absolute value of any fixed spin:

|m⊥| = | sinφi |. (7)

Below one can see the sketch of the derivations of equations (4) and (5).
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2. The Gaussian distribution

We calculate the disorder averagesinφ0 of the x-component of the spinS0 in some fixed
site S0 of the lattice. Our aim is to prove the inequalities

sinφ0 > C1
lnh0

h2
0

(8a)

sinφ0 < C2
lnh0

h2
0

(8b)

whereC1, C2 are constants.
The origin of the lower estimation(8a) is seen from the two-spin model with the

following Hamiltonian

H = −JS1S2−H1S
z
1 −H2S

z
2 (9)

whereH1, H2 are random fields. Let the fieldH2 � J and the fieldH1 be such that
H1+ J � J 2/H2. Compare the energies of two equilibrium states of the system: the state
A with Sx1 = Sx2 = 0 and the stateB with Sx1 ≈ 1, Sx2 ≈ J/H2. One easily sees that the state
B is deeper. Thus, the transversal magnetization is of order 1. For the Gaussian distribution
of the fieldsH1, H2 with the widthh0 � J , the above configurations of the random fields
have the probabilityP ∼ lnh0/h

2
0. This provides the estimation (8a).

In the many-spin problem the main contribution to the transversal magnetization comes
from the random field configurations with

|H0+ J
∑
k

signHk| < ε
∑
k

J 2

|Hk| (10)

|Hk| > �J |Hp| > �J (11)

whereH0 is the field at the siteS0, Hk are the fields at the neighbouring toS0 sites,Hp
the fields at the neighbours of the nearest neighbours ofS0, the constantsε � 1, � � 1.
The probability of the configuration (10), (11) is of order lnh0/h

2
0. Hence, to prove the

inequality (8a) it suffices to show that sinφ0 ∼ 1 under the conditions (10), (11). To make
this, we compare the energy of the lowest state with sinφ0 < ε, A, and the energy of the
described below stateB with sinφ0 = 1. In the stateB, all the spins, exceptS0 and its
neighbours, are chosen to have the same direction, as in the stateA, and the neighbours,
Sk, correspond to the minimum of the energy:

sinφk = cosφk
J
∑

l sinφl
Hk + J

∑
l cosφl

(12)

where
∑

l denotes the summation over all the neighbours of the spinSk. Analogously to
the two-spin example, the stateB is deeper thanA. This allows us to prove equation (8a).

The same arguments show that the transversal magnetization is non-zero for any
h0 <∞.

Let us derive equation (8b). For the strong random fieldH0 at the siteS0, the spin
S0 is oriented almost along the field. Only spins in the weak fields provide contributions
to the transversal magnetization. These contributions depend on the random fields at the
neighbouring sites. However, they are independent of the random fields at the distant spins,
since the correlations between the transversal components of the spins rapidly decrease
when the distance is increased. It turns out that for largeh0 the magnetization is sensitive
to the values of the random fields only within the cube0 with the edge length equal to 9a
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and with the centre in the siteS0 (a is the distance between the neighbouring spins). This
allows us to reduce the investigation to the consideration of the following four possibilities.

(1) At least in two points in the cube0 the random fieldsHi < �J , where the constant
�� 1.

(2) In all the points of0 Hi > �J .
(3) The fieldHi < �J in one non-central point of the cube.
(4) The fieldH0 < �J .
The probability of the first case is of order 1/h2

0. Hence, the corresponding random
field realizations provide the contribution,m1, to the transversal magnetization

m1 <
constant

h2
0

. (13)

In the second case the spinS0 behaves almost as in the strong uniform field, and the
transversal magnetization is small. One can estimate the magnetization, using equation (12)
three times, estimating sinφk and cosφk in the right-hand side of the final formula with
their extremal values, and calculating the disorder average. The resulting contribution to
m⊥

m2 < constant

(
lnh0

h0

)3

. (14)

In the third case, there are two possibilities:
(3a) in the cube1 with the edge length equal to 5a and with the centre in the siteS0,

the random fieldHi > �J ;
(3b) there is a pointS1 in the cube1, where the fieldH1 < �J .
Case (3a) can be studied by the same method, as the case (2). The resulting contribution

to the transversal magnetization

m3a< constant

(
lnh0

h0

)3

. (15)

In case (3b) equation (12) provides the following estimation of the contribution tom⊥:

m3b < constant

(
lnh0

h0

)3

+ constant(psinφ1) (16)

where sinφ1 is the x-component of the spin at the siteS1, p is the probability of the
configuration (3b). The average,sinφ1, is estimated analogously to the consideration of
case (4).

In the fourth case there are two variants:
(4a) |H0+ J

∑
k signHk| < C

∑
k
J 2

|Hk | ;

(4b) |H0+ J
∑

k signHk| > C
∑

k
J 2

|Hk | ,
where the notations are the same as in equation (10), the constantC � 1. The probability
of configuration (4a) is of order lnh0/h

2
0. Hence, the contribution of this configuration to

the transversal magnetization

m4a< constant
lnh0

h2
0

. (17)

In case (4b) sinφ0� 1. Calculations with equation (12) provide the estimation

m4b < constant

(
lnh0

h0

)3

. (18)

Combining inequalities (13)–(18), one obtains equation (8b). This proves equation (4).
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3. The bimodal distribution

In this case, the main contribution to the magnetization comes from the regions with the
random fields oriented up and down in the chess order. We shall call the regions, in any
point of which the direction of the field is opposite to the direction of the random fields in
all the neighbouring sites, as the chess regions. In the chess regions, the Hamiltonian (1)
can be obtained from the Hamiltonian of the antiferromagnet in the uniform field by the
inversion,Si → −Si , of the spins of one of the two ‘chess’ sublattices. This implies, that
in the large chess regions, the transversal magnetization appears at the same critical field,
as in the ‘clean’ antiferromagnet. In our model this field,Hc = 4DJ . One can check, that
m⊥ 6= 0 for anyH < Hc.

The critical behaviour (5) is a consequence of the fact that the large chess regions are
exponentially rare. More exactly, the large chess regions are exponentially rare at the weak
disorder (c � 1 or 1− c � 1) in the spatial dimensionsD > 1, and for any strength of
the disorder atD = 1. The question of what happens above the percolation threshold is
beyond the scope of this letter.

Our aim is to prove the inequalities

m⊥ > exp

(
− C1

(Hc−H)D/2
)

(19a)

m⊥ < exp

(
− C2

(Hc−H)D/2
)

(19b)

whereC1, C2 are constants. Equation (19b) is proven below forD 6= 2. In the two-
dimensional case we shall prove a weaker inequality:

m⊥ < exp

(
− constant

(Hc−H) ln(1/(Hc−H))
)
. (19c)

It is interesting to elucidate whether logarithmical corrections are present in the two-
dimensional system, or equation (19b) is always valid.

To deduce equation (19a), consider a chess region of the sizeL � a. Such
regions have concentrations of order exp(−constantLD). For sufficiently largeL, the
magnetization in the centre of the region is the same, as in the pure antiferromagnet,
sinφ ∼ √1−H/Hc. Comparison of the different contributions to the energy shows that
the state with sinφ ∼ √1−H/Hc becomes favourable atL ∼ 1/

√
1−H/Hc. This allows

us to prove equation (19a).
Outside the chess regions the transversal magnetization is a rapidly decreasing function

of the distance from the nearest chess region. One can estimate the rate of decrease with
equation (12). One rewrites (12) outside the chess region atH ≈ 4DJ in the following
form

sinφk <
J
∑

l sinφl
H − (2D − 1)J

. (20)

Applying equation (20) several times, one obtains for the transversal component of the spin
Sk

sinφk <

[
2DJ

H − (2D − 1)J

]S
(21)

where S is the distance from the spinSk to the nearest chess region. To deduce
equation (19b), one needs an estimation of the same structure, as (21), but with a larger
exponent thanS.
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To find such an estimation, consider a small chess region of the volumeV � Vc, where

Vc ∼ (Hc−H)−D/2 D 6= 2 (22a)

Vc ∼ 1

(Hc−H) ln(1/(Hc−H)) D = 2. (22b)

Inside the region, equation (12) implies the following inequality:

1 sinφ > −Hc−H
J

(sinφ)max (23)

where

1 sinφ =
∑

neighbours

sinφk − 2D sinφ (24)

is the lattice Laplacian,(sinφ)max the maximal value of the transversal magnetization in
the region. One can represent a solution of the Poisson equation as the sum of a particular
solution and a solution of the Laplace equation. The particular solution can be chosen in
the form of the potential of the mass distribution from the right-hand side of the equation.
The solution of the Laplace equation can be estimated with the principal of maximum. This
allows us to obtain from equation (23) that

sinφ < (1+ ε)(sinφb)max (25)

where ε � 1, (sinφb)max is the maximal magnetization on the border of the region.
Equation (25) provides an estimation of the magnetization in the chess region via the
magnetization outside the region. With equations (20) and (25) one finds that

sinφk < constant

[
2DJ(1+ ε)

H − (2D − 1)J

]S ′/Vc

(26)

whereVc is a critical volume (22),S ′ is the distance from the spinSk to the nearest chess
region of the volumeV > Vc. Since such regions are exponentially rare, equation (26)
allows us to obtain equations (19b) and (19c).

4. Discussion

The ordering in the studied system is determined by the rare regions. This resembles the
Griffiths phase of the impure magnets [14]. However, in contrast to the Griffiths transition,
in our problem there is a spontaneous symmetry breaking and a long-range order. The order
appears due to a weak interaction of the ordered regions. Such interaction exists also in
other disordered systems. However, it does not necessarily lead to the appearance of the
long-range order at non-zero temperatures. Near the Griffiths point this interaction is weak
and thermal fluctuations destroy the order. This happens for example in the random bond
ferromagnet. In our problem there are no thermal fluctuations and thus the system is always
in the ground state. Below the critical field at which rare ordered regions appear, this state
is ferromagnetical.

Since the mean field approximation [9] ignores contributions from the rare regions, it
provides wrong results. For the Gaussian random field distribution, the mean field theory
predicts an incorrect exponential dependence of the magnetization on the distribution width.
In the bimodal case, this approximation gives both an incorrect critical field and an incorrect
critical behaviour.

Results, obtained for the bimodal distribution, are applicable for many related systems.
In particular, the critical behaviour (5) is expected for the random antiferromagnets in the
uniform field.
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The considered model does not include the quantum effects. Strong quantum fluctuations
can completely transform behaviour of the system. If the quantum fluctuations are weak,
they are relevant only near the critical field. Thus, for the weak quantum fluctuations
there are two regimes in the critical domain: fast magnetization decreasing (5) as the field
increases (in weaker fields), and slow decreasing in the quantum regime (in stronger fields).
As a result, the graph of the magnetization contains a step. I believe, that qualitatively
the same behaviour can be found for the random antiferromagnets in the uniform field
even for not very weak fluctuations. It would be interesting to observe such a behaviour
experimentally.

I thank V S Dotsenko for useful discussions. This work was supported by RFBR grant No
96-02-18985.
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